已知数列{an}中,a1=1,n∈N*,an>0,数列{an}的前n项和为Sn,且满足an+1=2Sn+1+Sn?1.(1)求数列{an}

2025-04-18 10:06:24
推荐回答(1个)
回答1:

(1)解:∵an+1

2
Sn+1+Sn?1

Sn+1?Sn
2
Sn+1+Sn?1

(Sn+1?
1
2
)2?(Sn?
1
2
)2=2

∵a1=1,∴(S1?
1
2
)
2
1
4

∴数列{(Sn?
1
2
)2
}是以
1
4
为首项,2为公差的等差数列
(Sn?
1
2
)
2
=
1
4
+2(n?1)=
8n?7
4

∵a1=1,an>0,
∴Sn>1
Sn
1
2
+
8n?7
2

∴当n≥2时,an=Sn-Sn-1=
8n?7
?
8n?15
2

当n=1时,a1=1,
∴an=