=1解:
因为x+1/y=y+1/z所以x-y=(y-z)/(yz)
因为x+1/y=z+1/x所以x-z=(y-x)/(xy)
因为y+1/z=z+1/x所以y-z=(z-x)/(xz)
后三式相乘,得到
(x-y)(x-z)(y-z)=(y-z)(y-x)(z-x)/[(xyz)^2].
因为x,y,z两两不等,
所以
1/(xyz)^2=1.
X+1/Y=Y+1/Z=Z+1/X = k (1)
(1)分别乘以yz,xz,xy=>
xyz+z=kyz (2)
xyz+x=kxz (3)
xyz+y=kxy (4)
(2)-(3)=> z-x=kz(y-x) (5)
(3)-(4)=> x-y=kx(z-y) (6)
(4)-(2)=> y-z=ky(x-z) (7)
(5)(6)(7)得k^3*xyz=-1 (8)
(1)分别乘以y,z,x得
xy+1=ky (9)
yz+1=kz (10)
zx+1=kx (11)
(9)-(10)=> y(x-z)=k(y-z) (12)
(10)-(11)=> z(y-x)=k(z-x) (13)
(11)-(9)=> x(z-y)=k(x-y) (14)
(12)(13)(14)相乘得k^3=-xyz (15)
由(8)/(15)得xyz=1/(xyz)
所以1/(xxyyzz) = 1
依题意:
X+1/Y=Y+1/Z,推出X-Y=(Y-Z)/YZ,同理,Y-Z=(Z-X)/ZX,Z-X=(X-Y)/XY,将这三个等式左边乘左边,右边乘右边,得(X-Y)(Y-Z)(Z-X)=(X-Y)(Y-Z)(Z-X)/YZ*ZX*XY,因为X、Y、Z两两不等,所以(X-Y)(Y-Z)(Z-X)=不等于0,两边约去,最后得出1/(XXYYZZ)=1