计算极限x→∞,x눀(e以x为底的1⼀2次方-1)等于?

2025-04-04 07:08:57
推荐回答(2个)
回答1:

利用e^x-1~x (x-->0),题中x趋于无穷大时,1/x^2 趋于0.
所求极限=lim(x-->∞) x^2*(1/x^2)=1

也可以进行变换:令y=1/x^2, x--> ∞时,y-->0+,于是有
原极限=lim(y-->0+ )(e^y-1)/y=1

回答2:

=lim(x→∞)[e^(1/x²)-1]/(1/x²) 0/0型
=lim(x→∞)[e^(1/x²)·(1/x²)']/(1/x²)' 洛必达
=lim(x→∞)[e^(1/x²)
=1