用数列极限的精确定义证明这个极限[(n平方减2)⼀(n平方加1加n)]=1,n趋向于无穷大!

2025-04-19 23:56:06
推荐回答(2个)
回答1:

考虑
|(n^2-2)/(n^2+n+1) - 1|
=| (n^2-2-n^2-n-1)/(n^2+n+1) |
=| (-n-3)/(n^2+n+1) |
=(n+3)/(n^2+n+1)
<(n+3)/n^2 (因为n^2+n+1>n^2)
限制n>3
<2n/n^2
=2/n
对任意ε>0,取N=max{2/ε,3}>0,
当n>N,就有|(n^2-2)/(n^2+n+1) - 1|<ε
根据定义,
lim (n^2-2)/(n^2+n+1) = 1
有不懂欢迎追问

回答2:

根据极限定义:
要证明极限为1,只需证明|(n^2-2)/(n^2+n+1)-1|<ε即可
则有|(n^2-2)/(n^2+n+1)-1|=(n+3)/(n^2+n+1)<(n+3)/(n^2+n)=n/(n^2+n)+3/(n^2+n)设n0=[1/ε]
∀n>n0
∃1/(n+1)<1/([1/ε]+1])<ε
证完