已知sinα=3/5,α∈(0,π/2),cosβ=4/5,β∈(-π/2,0),那么:cosα=根号(1-sin²α)=4/5,sinβ=-根号(1-cos²β)=-3/5所以:sin(α+β)=sinαcosβ+ cosαsinβ =(3/5)*(4/5) +(4/5)*(-3/5) =0