∵6S n =a n 2 +3a n +2,① ∴6S n+1 =a n+1 2 +3a n+1 +2,② ②-①得到6a n+1 =a n+1 2 +3a n+1 -a n 2- 3a n ∴3(a n+1 +a n )=(a n+1 -a n )(a n+1 +a n ) ∵正项数列{a n }, ∴a n+1 -a n =3或a n+1 +a n =0 ∴数列是一个公差为3的等差数列, ∵6a 1 =a 1 2 +3a 1 +2 ∴a 1 =1或2, ∵a 1 ,a 3 ,a 11 成等比数列 ∴当a 1 =1时,1,7,31不成等比数列, 首项等于2时,2,8,32成等比数列, ∴首项等于2, ∴数列的通项是a n =3n-1 故答案为:a n =3n-1 |