已知正项数列{a n },其前n项和S n 满足6S n =a n 2 +3a n +2,且a 1 ,a 3 ,a 11 成等比数列,则数列{

2025-04-20 04:53:59
推荐回答(1个)
回答1:

∵6S n =a n 2 +3a n +2,①
∴6S n+1 =a n+1 2 +3a n+1 +2,②
②-①得到6a n+1 =a n+1 2 +3a n+1 -a n 2- 3a n
∴3(a n+1 +a n )=(a n+1 -a n )(a n+1 +a n
∵正项数列{a n },
∴a n+1 -a n =3或a n+1 +a n =0
∴数列是一个公差为3的等差数列,
∵6a 1 =a 1 2 +3a 1 +2
∴a 1 =1或2,
∵a 1 ,a 3 ,a 11 成等比数列
∴当a 1 =1时,1,7,31不成等比数列,
首项等于2时,2,8,32成等比数列,
∴首项等于2,
∴数列的通项是a n =3n-1
故答案为:a n =3n-1