人类怎么知道“圆周率是一个无限不循环小数”的?

2025-04-09 07:57:59
推荐回答(4个)
回答1:

人类怎么知道“圆周率是一个无限不循环小数”的

在1761年的时候,数学家兰伯特证明了圆周率是一个无理数的这一事实。那么,人们为什么周而复始的计算着圆周率?假如某一天人们计算出圆周率又会怎样?计算圆周率到底有着什么样的作用和意义呢? 在古代由于计算条件的不发达,导致圆周率被计算出来的结果和位数都非常有限。随着科学技术的不断发展,在现在这个快速发展的时代,人们不仅有了电脑,还有其他辅助的工具可以来对圆周率进行计算。所以,在电脑以及其他辅助工具的支持下,圆周率的位数已经被人们计算到精确十万亿位了。虽然已经取得不小的成绩了,但是依然没有阻挡住人们想圆周率进发的步伐。这背后有着深层次的原因

 为精细的数字提供理论性的载体:如果有那么一天,人类需要发射很惊喜的东西为了航天事业发展的需要,需要较为完善的数据需确,在这种情况下,圆周率精确的大小就显得尤为关键了。 数学证明:虽然圆周率已经被前人证明到一个相对比较完善的数据了,但是一直以来缺乏理论性的支持而没太强的说服力。如果能够坚持对圆周率进行一个探索和深入研究的话,能够说服大多数人,从而证明圆周率的准确性。如果能够一直这样的话,那么无疑有为圆周率的结果进一步的提供科学理论的支持。验证科学;虽然我们已经得到一个初步的结论:圆周率是一个无线不循环的小数但是不论什么原因吧,人们都想为最终完善的结果做出自己的努力。 圆周率对于世界有着非常重要的作用,上知天文,下知地理,圆周率存在于我们生活的各个方面,时刻影响着我们的生活。

回答2:

计算。因为人类通过计算得知圆周率是一个无限不循环小数,所以人类知道。

回答3:

因为“圆的周长与直径的比”只有唯一的一个比是6+2√3比3,所以圆周率是有限的。
圆周率是我国西汉的文学家刘歆最早根据已知圆面积七平方,首先推出:“圆的周长6+2√3与直径3的比”,然后再根据这个比才能计算出比值为3.1547...(也就是圆的周长与直径的比值是3分之6+2√3)。
其余的比值都不是圆的周长与直径的比值,而是正6x2ⁿ边形的周长与过中心点的对角线的比值。由于n无限,因此3.1415926......就无限。

回答4:

我觉得人类之所以会知道圆周率是一个无限不循环小数是因为千百年来的数学家的计算结果证明了它是一个无限不循环的小数,直到现在我们还没能够算出它最准确的数值!