运筹学,单纯形法求解。 maxz=2x1+x2+x3 st:4x1+2x2+2x3≥4 2x1+4x2≤20 4x1+8x2+2x3≤1

6x1,x2,x3≥0maxz=2x1+x2+x3 st:4x1+2x2+2x3≥4 2x1+4x2≤20 4x1+8x2+2x3≤16
2025-04-08 11:05:12
推荐回答(1个)
回答1:

郭敦顒回答:
maxz=2x1+x2+x3
st:4x1+2x2+2x3≥4 (1)
2x1+4x2≤20 (2)
4x1+8x2+2x3≤1 (3)
(3)-(2)得2x3≤-39,
x3≤-19.5
4x1+2x2+2x3=4,4x1+8x2+2x3=1时,
6x2=-3,x2=-0.5代入(2)得,2x1≤18,x1≤9
将x1=9,x2=-0.5,x3=-19.5代入目标值得,
maxz=2x1+ x2+ x3=18-0.5-19.5=-2,
maxz=-2。